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Les Figs. (3)-(4) rep&entent respectivement pour: pr= 
lo-‘; 0,7; 10; 10’ les variations de Nu. Re-‘12 et celles de 
#C,. Re”* en fonction de 5 deduites de (34)-(35) (approxima- 
tion du 2nd ordre). 

Insistons sur le fait que ces rtsultats ne sont valables que 
pour 5 << 1. 
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NOMENCLATURE 1. INTRODUCHON 

2a, channel width ; 

%wctlh 
Eckert number ; 
functions defined in (4); 

&(~bfi(rt),f&), functions defined in (7); 
P? pressure ; 
P, Prandtl number; 
49 Nusselt number; 
r0, the distance of a given point on either disc 

from the centre; 
r, dimensionless radial distance; 
r’,B’,z’, cylindrical polar coordinates; 
R, Reynolds number ; 
S, elastic parameter; 
T,, T,, constant temperatures at the discs ; 
d, v’, velocity components in r’, z’ directions 

respectively ; 

PROBLEMS of flow and heat transfer between two parallel 
porous or non-porous discs are of great importance in the 
design of thrust bearings, radial diffusers etc. Elkouh [l], 
Mishra et al. [2], Rasmussen [3] and Wang [4] studied a few 
problems between two rotating porous discs. All these 
authors confined their discussions to either constant suction 
or equal rates of suction and injection at the discs. Terril and 
Comish [5] studied the problem of radial flow of a viscous, 
incompressible fluid between two stationary, uniformly po- 
rous discs of different permeability and obtained solutions for 
small as well as large suction and injection velocities. The 
purpose of this paper is to generalize. Terril and Comish’s [S] 
problem to v&o-elastic fluid and to study related heat 
transfer problem. Since the viscoelastic fluids are being used 
as lubricants this problem may be. useful in the design of the 
externally pressurized thrust bearings. The viscoclastic fluid 
model considered is given by Walters [6]. 4 4 

v,, v,, 
dimensionless velocity components ; 
constant velocities at the discs. 

Greek symbols 

rl. dimensionless axial distance ; 
0. dimensionless temDerature : 
0&),0,(q), functions defined Ln (12); 
A the ratio of r by r,; 
5 dimensionless skin friction ; 
4. dissipation function. 

2. MATHEMATICAL ANALYSIS 

Consider the fluid in between two infinite porous discs z’ = 
-a and z’ = a. The fluid is injected or sucked normally with 
constant velocity V, at z’ = -a and V, at z’ = a. These 
velocities may have either sign but will be assumed positive in 
positive z’-direction. The discs are maintained at constant 
temperatures T, and T, respectively. The geometry of the 
problem is shown in the Fig. 1. We shall work through 
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cylindrical polar system of coordinates (r’, t?‘, 2’). Let u’ and II’ 
represent the velocity components in the directions r’ and z’ 
respectively. 

r/*=-r = - -2 3(V,-V,)+G ~(Y,-V,)z+(V:-V:) 
[ 3 

The momentum and the energy equations are 

f” - 2dr” + $P’ = - ;p - S[4Yf”’ _ 2rr”’ + 2f’z] - ; RS[( V, - I’,)’ + 5( V: - V:,] (9) 

(1) and 

(2) 

(3) +;RS[(“, - I’,)* - 5(V: - I’;)]. (10) 

where 

rl ’ 
Substitution of (4) into equation (3) gives 

r=-,q=f-,u=+, .+-,e= 1aB a2e 
a a 0 0 

;T’1-, R = U,a 
?. 1 

&!f E= “’ 

T’ f!?p!p_~~ +rz+~)+~(Y.‘+;~2) 

k’ 02 - T,) 
(S==$. _ y 6f’f’ _ f,f’3 _ $y’f”’ + ;fyyrf (11) 

U, is the characteristic velocity, # is the dissipation function 
c ! 

and In view of equation (ll), tl can be written in the form 

0 =f(tl), u = - +I). 
R = r%(rl) + e,(q). (12) 

(4) From (12) and (11 ), the foliowing equations are obtained : 

Eliminating p from (1) and differentiating the resulting 
equation with respect to q we get 

f”’ - Rff” + RS(4f “f’” -ff” +f’f“‘) = 0. (5) and 

and boundary conditions become 

f*=o,f=v,, e=o at q= -1 

f’ = 0, f= V,, e = 1 at r) = 1. (6) 

3. METiiOD OF SOLUTION 

Equation (5) is a Sth-order differential equation and it is 
difficult to have a closed form solution with four boundary 
conditions. If we put S = 0, it reduces to an equation 
governing the Newtonian fluid. Hence we can regard the effect 
of elasticity as a perturbation over the Newtonian fluid. 
Moreover, when R = 0, the elasticity of the fluid does not play 
any role. Thus we take R as a perturbation parameter for 
small injection or suction rate and write 

/(tl) = i: Rlf.01). (7) 
n=O 

Substituting (7)into equation (5) and equating like powers up 
to the coefficient of R* we get three equations, and solving 
these with appropriate boundary conditions we get 

x ($ - 2n3 + n) + $v: - v:xt14 -2$+1) .(8) 
I 

The expression for fz is not included as it is very large. The 
dimensionless skin frictions at the plates n = - 1 and rt = 1 
are given by 

2’ 
v2 + T2 v2 

- 17%/s + 5r)‘) + 
P2RZ 

1612800 (10920 - 32209~ + 33600$ 

- 9949$ - 4200$ + 2525~~ - 175.r~‘) 

Vl Vl 
T 

SPR2 
+ 11200(‘O$ - 32q3 + 38~) 

I 
+ V;(l - $) 

g&9240 + 613~ 

FIG. 1. Geometry of the problem. - 3360$ - 527~~ + 84Otf + 175~5 - $7) 

fe: = &(4e, + e ;) + Ffrz + 3s~p -ff’f”) 

which are to be solved with the conditions 

t) = -1: 8, = eO = 0 

tj = 1: e2 = 0, e, = i. (14) 

Let us write 

ez = 62.0 + v,e,,, + F,e,~, 

+ v:e,.,, + v,v,9,,,, + W,.,, + . . . 

e. = 60.0 + v,6,,, + v,6,.z + FI~o.,, 

+ v,v,e,,,, + W,,,, + .., (15) 

and 

f= J’,F, + V,F, + VfF,, f V,V,F,, + V;F,, + . . . . 

Substitution of (15) into (13) gives two sets of differential 
equations which when solved with proper boundary con- 
ditions lead to 

e = $r’PE(V, - V,Y(l - s4f + ;($ + 1) 

V,PR 
-s V,(l - $)(20 - 9s + 03) - -&l - $) 

x (20 + 9s - $) + V:(l - 9’) 
c 

g(ll3 - 37$ + 8q4) 

- g&9240 - 613~ - 336Ot$ + 527~~ +.840@ 
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P2R2 
- 1612800(10920 + 32209~ + 33600$ + 9949$ 

- 4200q4 - 2525~~ + 175~~‘) + g$O$ 

- 327” + 38~) 1 - l’,V,(l - +) [ $3 - 379’ + 8~~) 

+ & (613~ - 527~” + 175~~ - 5~‘) 

+ &&(34991q - 9949tf” + 2525~~ - 175~‘) 

SPR’ 
+ &1h5 - 32~” + 38~) 

1 
. (16) 

The Nusselt number 4 at the lower disc and at the upper disc 
is respectively given by 

qlrl= _ 1 = - ; PEr;(V, - V#(,F + 1) 

-2 f-f”,P-;V,P+ 

109 
--PR+sP-g 

12600 

and 

qlv=, = iPE(V, - V,)‘r$A’ + 1) - 2 

V2*0.6 

” 

1 vz-0.2 

vz--0.2 

FIG. 2. Axial velocity distribution for different values of S, V, 
and V,. 

A=‘. 
r. 

4 DISCUSSION 

Figures 2 and 3 represent the axial velocity distribution for 
different values of S, R, V, and V,. For a fixed value of V,, the 
velocity decreases with respect to I. The elasticity of the liquid 
decreases it further up to the central plane after which an 
opposite effect is observed. The same conclusion may be 
drawn when V, > V,. A reverse effect is seen in the case if V, 
< V,. It is very interesting to observe that the velocity is 
independent of the effect of elasticity at any point on the 
central plane. All the curves are symmetrical with respect to 
the central plane. The velocity decreases as R increases in the 
region (- 1,0) for V, > V,, but increases for V, < V,. An 
opposite nature is observed in the interval (0, 1). 

The radial velocity is depicted in Fig. 4. When VI = 0.4 and 
V, = 0.2, the velocity increases from zero at the lower disc to 
the central plane and then decreases from the central plane to 
the upper disc. When V 1 = 0.4 and V, = - 0.2, the velocity is 
more than the corresponding parts, when V, = 0.4, and V 2 = 
0.2. When there is suction at both the discs, an opposite 
nature is noticed. The effect of elasticity is to decrease the 
velocity near the two discs but to increase the velocity near the 
central plane. The figure is not sensitive enough to indicate 
this observation. 

The shearing stress (Fig. 5) at rf = 1 decreases as R 
increases for all values of V, and V,. The elastic elements in 
the liquid increase the shearing stress at every point. An 
opposite effect is observed at the disc q = - 1. 

The temperature (Fig. 6) increases with the increase. in the 
values of both P and E. When there is fluid injection at the 
lower disc and fluid suction at the upper disc, (3 rises from zero 
at the lower disc to one at the upper disc, remaining greater 
than one throughout the region of the fluid except in the 
neigbbourhood of the lower disc. When there is suction at 
both the discs and at every point of the fluid, 0 is more than its 

FIG. 3. Effect of R, V, and V, on u. 
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FIG. 4. Effect of I’, and V, on (-f’). 

corresponding part for V, > 0 and V, > 0. There is a sharp 
rise in the value of 0 when there is fluid injection at both the 
discs. For all the profiles, the maximum temperature moves 
towards the upper disc. The temperature decreases as R 
increases, and the effect of elasticity on 0 is very small. The 
elasticity of the liquid decreases the fluid temperature be- 
tween the lower disc and central plane and increases the value 
of 0 from the central plane to the upper disc (Table 1). 

The rates ofheat transfer at both the discs are shown in Fig. 
7. The rate of heat transfer at the upper disc increases in some 
liquid layer due to an increase in the value of both P and E ; 

OIlOOOO O.OOOOO O.OOOOO 0.0 
-1.0 o.OoooO O.OOOOO o.ooooo 0.1 

0.58374 0.57994 0.57867 0.0 
-0.6 0.58372 0.57984 0.57855 0.1 

1.01499 1.00869 1 DO659 0.0 
-0.2 1.01498 1.00863 1.00651 0.1 

1.14280 1.13620 1.13400 0.0 
0.0 1.14280 1.13620 1.13400 0.1 

1.20396 1.19777 1.19571 0.0 
0.2 1.20398 1.19784 1.19579 0.1 

1.15571 1.15207 1.15085 0.0 
0.6 1.15573 1.15217 1.15098 0.1 

MOO00 100000 MOoOO 0.0 
1.0 1.OooOo l.ooooo 1.oOooo 0.1 

FIG. 5. Shear stresses at the two discs. V, = 1.0, V, = 0.2, r = 0.5, P = 2.0, E = 1.0. 

v, V, P E 

I a?3 0.2 5.0 3.5 

0.8 0.2 5so 2.0 

III 08 0.2 5.0 1.0 

IV 0.8 0.2 2.5 1.0 

v 0.8 0.2 2.0 I.0 

VI -0.4 0.2 5.0 1.0 

VII 0.8 -0.4 2.5 1.0 

2.0 - 

1.0 

K, j ,:y , 
(-1.0,O.O) -0.5 0.0 0.5 1.0 

FIG. 6. Temperature distribution for different values of V ,, V 2r 
P and E. 

outside that layer an opposite effect is observed. For a fixed 
V, > 0, 41 + 1 decreases as V, > 0 increases. When there is 
fluid injection at both discs, q I+ 1 is more than that of when V 1 
> 0 and V 2 > 0. The value of q I+ 1 decreases with an increase 
in 1. A reverse phenomenon is noticed at the lower disc. The 
effect ofelasticity is to increase the rate of heat transfer at both 
discs. 

Acknowledgement-The authors express their sincere thanks 
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Table 1. Values for 0 for different values of R and S. 

tllR 0.2 0.8 1.0 S 
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VI y P 

I 1.0 02 2.0 
II 1.0 0.2 3.0 

III 1.0 0.2 3.0 

IV 1.0 03 2.0 
v 0.4 -@4 3.0 
VI 0.6 -0.4 3.0 

-8 . 

FIG. 7. Rate of heat transfer at the discs. 
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NOMENCLATURE 

ab absorption coefficient ; 
A,, A,, area ekments ; 
D, length defined in Fig. 3 ; 
-%? exponential function ; 
FOX, l/P), elliptic funcnon of the first kind; 
Fi-j, shape factor between areas A, and Aj; 
H, (Ra + z’)~“; 
nl, nzr unit vectors defined in Fig. 1; 
r1, unit vector defined in Fig. 1; 

S&j3 
Wi-j9 

distance between dA, and dA2 ; 
length defined in Fig. 2; 
weak-band geometric mean beam length ; 
strong-band geometric mean beam length ; 
very-strong-band geometric mean beam 
length ; 
angle dehned in Fig. 2; 
angle defined in Fig. 3 ; 
geometric-mean transmittance. 


