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Les Figs. (3)4) représentent respectivement pour: Pr=
1072;0,7; 10; 10 les variations de Nu. Re~ % et celles de
1C;. Re'” enfonction de ¢ déduites de (34)-(35) (approxima-
tion du 2nd ordre).

Insistons sur le fait que ces résultats ne sont valables que
pour ¢ « 1.
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NOMENCLATURE
2a, channel width;
E, Eckert number ;
f(n),f'(n), functions defined in (4);
Jom).f1(n).f2(n), functions defined in (7);
P, pressure ;
P, Prandt]l number;
q, Nusselt number;
os the distance of a given point on either disc
from the centre;
r, dimensionless radial distance;
r,e.z, cylindrical polar coordinates;

R, Reynolds number;

S, elastic parameter ;

Ty, Ty constant temperatures at the discs;

w,v, velocity components in r, z' directions
respectively ;

u, v, dimensionless velocity components;

Vi,V constant velocities at the discs.

Greek symbols

n, dimensionless axial distance;
0, dimensionless temperature ;
05(n), 05(n), functions defined in (12);

, the ratio of r by ry;
T, dimensionless skin friction;
@, dissipation function.

1. INTRODUCTION

ProBLEMS of flow and heat transfer between two parallel
porous or non-porous discs are of great importance in the
design of thrust bearings, radial diffusers etc. Elkouh [1],
Mishra et al. [2], Rasmussen [3] and Wang [4] studied a few
problems between two rotating porous discs. All these
authors confined their discussions to either constant suction
or equal rates of suction and injection at the discs. Terril and
Cornish [5] studied the problem of radial flow of a viscous,
incompressible fluid between two stationary, uniformly po-
rous discs of different permeability and obtained solutions for
small as well as large suction and injection velocities. The
purpose of this paper is to generalize Terril and Cornish’s [5]
problem to visco-elastic fluid and to study related heat
transfer problem. Since the visco-¢lastic fluids are being used
as lubricants this problem may be useful in the design of the
externally pressurized thrust bearings. The visco-elastic fluid
model considered is given by Walters [6].

2. MATHEMATICAL ANALYSIS

Consider the fluid in between two infinite porous discs 2’ =
—aand z’ = a. The fluid is injected or sucked normally with
constant velocity V', at zZ = —ag and V, at 2/ = 4. These
velocities may have either sign but will be assumed positive in
positive z’-direction. The discs are maintained at constant
temperatures T, and T, respectively. The geometry of the
problem is shown in the Fig. 1. We shall work through
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cylindrical polar system of coordinates (', §, z'). Let #’ and v/
represent the velocity components in the directions r’ and 2’
respectively.

The momentum and the energy equations are
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U, is the characteristic velocity, ¢ is the dissipation function
and

v=fln), u= =2 (0. @

Eliminating p from (1) and differentiating the resulting
equation with respect to y we get
¥ = RE"+RSG 17— ff* +[f*) =0 (5)
and boundary conditions become
[ =0f=V,,8=0atn= -1
['=0,f=V, 8=1atn=1 (6)

3. METHOD OF SOLUTION

Equation (5) is a Sth-order differential equation and it is
difficult to have a closed form solution with four boundary
conditions. If we put § = 0, it reduces to an equation
governing the Newtonian fluid. Hence we can regard the effect
of elasticity as a perturbation over the Newtonian fluid.
Moreover, when R = 0, theelasticity of the fluid does not play
any role. Thus we take R as a perturbation parameter for
small injection or suction rate and write

fm= Y R (7)
n=0
Substituting (7)into equation (5) and equating like powers up

to the coefficient of R? we get three equations, and solving
these with appropriate boundary conditions we get
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The expression for f, is not included as it is very large. The

dimensionless skin frictions at the platesy = —landn = 1
are given by
z‘
fve H . fve
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T
FiG. 1. Geometry of the problem.
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Substitution of {4) into equation (3) gives

(10)
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In view of equation (11), 8 can be written in the form
8 = r’6,(n) + G4(n). (12)
From (12} and (11), the following equations are obtained:

"
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which are to be solved with the conditions
n=—1:0,=0,=0
n=1:0,=0,0,=1 (14)

Let us write
8, =80+ Vb, + Vi,
+ V0 + V Vil 4+ Vil + ..
05 =000+ Vibos + Vaboa + Vil
+ViValo o+ Vilo +... (15)
and

f=V Py VoFy + VIF L + VIV Fy + ViF s +

Substitution of (15) into (13) gives two sets of differential
equations which when solved with proper boundary con-
ditions lead to
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The Nusselt number g at the lower disc and at the upper disc
is respectively given by

3
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FIG. 2. Axial velocity distribution for different values of S, V,
and V,.
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where

4. DISCUSSION

Figures 2 and 3 represent the axial velocity distribution for
different values of S, R, V, and V. For a fixed value of V ,, the
velocity decreases with respect to . The elasticity of the liquid
decreases it further up to the central plane after which an
opposite effect is observed. The same conclusion may be
drawn when V; > V,. A reverse effect is seen in the case if V
< V,. It is very interesting to observe that the velocity is
independent of the effect of elasticity at any point on the
central plane. All the curves are symmetrical with respect to
the central plane. The velocity decreases as R increases in the
region (—1,0) for ¥V, > V,, but increases for V, < V,. An
opposite nature is observed in the interval (0, 1).

The radial velocity is depicted in Fig. 4. When V, = 04 and
V, = 0.2, the velocity increases from zero at the lower disc to
the central plane and then decreases from the central plane to
the upper disc. When V; = 0.4and V, = —0.2, the velocity is
more than the corresponding parts, when V|, = 04,and V, =
0.2. When there is suction at both the discs, an opposite
nature is noticed. The effect of elasticity is to decrease the
velocity near the two discs but to increase the velocity near the
central plane. The figure is not sensitive enough to indicate
this observation.

The shearing stress (Fig. 5) at n = 1 decreases as R
increases for all values of V' and V,. The elastic elements in
the liquid increase the shearing stress at every point. An
opposite effect is observed at the disc n = —1.

The temperature (Fig. 6) increases with the increase in the
values of both P and E. When there is fluid injection at the
lower disc and fluid suction at the upper disc, 8 rises from zero
at the lower disc to one at the upper disc, remaining greater
than one throughout the region of the fluid except in the
neighbourhood of the lower disc. When there is suction at
both the discs and at every point of the fluid, 8 is more than its

FiG. 3. Effect of R, V, and V, on v.
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FiG. 4. Effect of V, and V, on (—f").

corresponding part for ¥y > 0and V, > 0. There is a sharp
rise in the value of 8 when there is fluid injection at both the
discs. For all the profiles, the maximum temperature moves
towards the upper disc. The temperature decreases as R
increases, and the effect of elasticity on 6 is very small. The
elasticity of the liquid decreases the fluid temperature be-
tween the lower disc and central plane and increases the value
of 8 from the central plane to the upper disc (Table 1).
The rates of heat transfer at both the discs are shown in Fig.
7. The rate of heat transfer at the upper disc increases in some
liquid layer due to an increase in the value of both P and E;
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Fi1G. 5. Shear stresses at the two discs.
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F1G. 6. Temperature distribution for different values of V', V5,

P and E.

outside that layer an opposite effect is observed. For a fixed
V, > 0, q|+, decreases as V, > 0 increases. When there is
fluid injection at both discs, q| . , is more than that of when V|
> 0and ¥, > 0.The value of g| . , decreases with an increase
in A. A reverse phenomenon is noticed at the lower disc. The
effect of elasticity is to increase the rate of heat transfer at both

discs.
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Table 1. Values for @ for different values of R and S.

n/R 02 038 1.0 S
0.00000 0.00000 0.00000 00

—10  0.00000 0.00000 0.00000 0.1
058374 0.57994 057867 00

—06 058372 0.57984 057855 0.1
1.01499 1.00869 100659 00

-02 1.01498 1.00863 100651 0.1
1.14280 1.13620 113400 00

0.0 1.14280 1.13620 113400 0.1
1.20396 1.19777 119571 00

02 1.20398 1.19784 119579 01
1.15571 1.15207 115085 00

0.6 1.15573 1.15217 115098 0.1
1.00000 1.00000 100000 00

1.0 1.00000 1.00000 100000 01

V,=10,V,=02r=05 P=20E = 10.
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FiG. 7. Rate of heat transfer at the discs.
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NOMENCLATURE
a absorption coefficient ;
Ay, Ay, area elements;
D, length defined in Fig. 3;

exponential function ;
F (x 1/2172), elliptic function of the first kind;

Fip shape factor between areas A4; and A4;;
(R2 + 22)1/2

n,, n,, unit vectors defined in Fig. 1;

Ty, unit vector defined in Fig. 1;

Xt

distance between dA4, and dA,;

R, length defined in Fig. 2;

R, weak-band geometric mean beam length ;

Sip strong-band geometric mean beam length;

Wi very-strong-band geometric mean beam
length;

0, angle defined in Fig. 2;

®, angle defined in Fig. 3;

a

ad1-2,  geometric-mean transmittance.



